AIEEE Maths Practice Questions...

Friday, December 31, 2010
1.In a triangle ABC, if A, B, C are acute angles, then \cot A. \cot B. \cot C is
not greater than \frac {1}{3 \sqrt {3}}
greater than \frac {1}{3 \sqrt {3}}
greater than 2 \sqrt {3}
less than 2 \sqrt {3}

2.If f (x) is a function satisfying f (x + y)= f(x) f(y) \forall x, y \in N, such that f(1)=3 and \overset{n}{\underset{x=1}{\sum}}f(x)=120. Then the value of n is
5
4
6
none

3.If f(x)=\cos [\pi^2]x+\cos[-\pi^2]x where [x] denotes greatest integer function
f(\pi/4)=2
f(\pi/2)=-1
f(-\pi)=3
f(\pi)=1

4.A particle moves in a straight line with a velocity given by \frac {dx}{dt}=x+1. (x is the distance described). The time taken by the particle to traverse a distance of 99 meters is

 
\log_{10}e
\frac {1}{2}\log_{10}e
2 \log_{10}e
2\log_e10

5.The value of b and c for which the identity f(x+1)-f(x)=8x+3 is satisfied, where f(x)=bx^2+cx+d are

 
none
b = 4, c = -1
b = -1, c = 4
b = 2, c = 1

6.If \overrightarrow {a}, \overrightarrow {b}, \overrightarrow {c} are non-coplanar unit vectors such that \overrightarrow {a}* (\overrightarrow {b} * \overrightarrow {c})=\frac {\overrightarrow {b} + \overrightarrow {c}}{\sqrt {2}}. Then the angle between \overrightarrow {a} and \overrightarrow {b} is



 
\pi
\frac {\pi}{2}
\frac {\pi}{4}
\frac {3\pi}{2}

7.Let f be differentiable for all x. If f(1)=-2 and f'(x)\underline >2 \forall x \in [1,6]. Then
none
f(6)\underline >8
f(6)\underline <5
f(6)<8

8.If a<\int_{0}^{2\pi}\frac {dx}{10+3 \cos x}<b then the ordered pair (a, b) is



 
\big( \frac {2\pi}{7}, \frac {2\pi}{3} \big)
\big( \frac {\pi}{10}, \frac {2\pi}{13} \big)
none
\big( \frac {2\pi}{13}, \frac {2\pi}{7} \big)

9.If u_{10}=\int_{0}^{\pi/2}\sin x^{10}dx, then the value of u_{10}+90 u_8 is



 
\big( \frac {\pi}{2}\big)^9
10 \big( \frac {\pi}{2} \big)^9
9 \big( \frac {\pi}{2} \big)^8
9 \big ( \frac {\pi}{2} \big )^9

10.x\xrightarrow []{lim}0 \frac {1}{x}\Bigg( \int_{y}^{a}e^{\sin^2t} dt-\int_{x+y}^{a}e^{\sin^2t} dt \Bigg) is equal to



 
none
\sin 2y \quad e^{\sin^2y}
0
e^{\sin^2y}

0 Comments:

Post a Comment

comment

 
 
 

Recent Posts

New User Register Here

 
Copyright © 2010-2011 Find Out What You Want
Bloggerized by Mangesh Shinde